

Air Force Research Laboratory

Integrity ★ Service ★ Excellence

Forecasting Solar Indices with ADAPT

April 28, 2016 Space Weather Workshop

Carl J. Henney¹, Nick Arge¹, Kathleen Shurkin², Frank Hill³

- AFRL/Space Vehicles Directorate, Kirtland AFB, NM
 ISR, Boston College, Chestnut Hill, MA
 - 3. National Solar Observatory, Boulder, CO

<u>Air Force Data Assimilative</u> <u>Photospheric Flux Transport (ADAPT)</u>

The ADAPT* model generates global solar photospheric magnetic field maps using flux transport that accounts for known surface flows in the solar photosphere:

- differential rotation
- meridional circulation
- supergranular diffusion

Global magnetic maps are utilized to drive:

- coronal & solar wind models used to forecast wind parameters and Coronal Mass Ejection (CME) arrival times
- empirical models to forecast $F_{10.7}$ and XUV/EUV/FUV irradiance 1 to 7 days in advance for thermospheric modeling

Example ADAPT Global Solar Magnetic Map

ADAPT Maps Online

Example ADAPT maps for 05nov2015

Two types of ADAPT/GONG maps are generated daily at the National Solar Observatory (NSO) at: ftp://gong2.nso.edu/adapt/maps/

+90

Carrington Frame

Sub-directory: public/gong/.

Prefix: "adapt403"
Cadence: 12 hours

Realizations: 12*

Central Meridian Frame

Sub-directory: noaa/..

Prefix: "adapt413" Cadence: 2 hours

Realizations: 12*

^{*} Currently, realizations only differ by supergranulation flow pattern.

ADAPT Solar Magnetogram Sources

Kitt Peak Vacuum Telescope

NSO Integrated Synoptic Program Vector SpectroMagnetograph

KPVT: 1977 – 2003

[24 hr, single site, 868.8 nm]

NISP/VSM: 2003 - present

[24 hr, single site, 630.2 nm]

NISP/GONG: 2006 - present

[10 min, 6 sites, 676.8 nm]

SDO/HMI: 2010 - present

[12 min, Sat-GEO, 617.3 nm]

NSO Integrated Synoptic Program Global Oscillation Network Group

Helioseismic and Magnetic Imager (on the Solar Dynamics Observatory)

Solar Indices

- Solar extreme ultraviolet (EUV) radiation is absorbed in the Earth's upper atmosphere (drives ionization & heating)
- Several solar indices have been used as proxies for EUV for periods without measurements at 10-120 nm, for example, the sunspot number (SSN), solar radio flux at 10.7 cm (F_{10.7}) and the Mg II core-to-wing ratio
- Even with regular EUV irradiance observations (i.e., TIMED/SEE), solar $F_{10.7}$ and the Mg II Index are still used as the primary input to ionospheric, thermospheric, and orbital drag models

Sunspot Number & F_{10.7}

Sunspot Number & $F_{10.7}$ (cont'd)

Observed $F_{10.7}$ values when SSN=0

Solar F_{10.7} & Magnetic Field

VLA observation at 2.8 GHz (10.7 cm) from Dec 9, 2011; courtesy of Stephen White (AFRL). Contours are radio flux; background image SDO/HMI magnetogram.

For more discussion on $F_{10.7}$ sources, see: Schonfeld et al. 2015, ApJ, 88, 29

F_{10.7} & VUV Empirical Models

The F10.7 & VUV empirical models, based on Henney et al. 2012, use the near-side magnetic field estimates from the ADAPT maps:

$$F_{\text{model}} = m_0 + m_1 S_{\text{P}} + m_2 S_{\text{A}}$$

 $S_{P} = \frac{1}{\sum \omega_{\theta}} \sum_{25G < |B_{r}|}^{|B_{r}| < 150G} |B_{r}| \omega_{\theta}} \sum_{30G \le |B_{r}|}^{|B_{r}| < 150G} |B_{r}| \omega_{\theta}.$ $Solar Weak Field ["Plage"] S_{A} = \frac{1}{\sum \omega_{\theta}} \sum_{150G \le |B_{r}|}^{|B_{r}| < 150G} |B_{r}| \omega_{\theta}.$ Solar Strong Field ["Active"]

For more discussion on the $F_{10.7}$ & VUV modeling, see: Henney et al. 2015, Space Weather, 13

AFRL

ADAPT $F_{10.7}$ Model Nowcast

Henney et al., Space Weather, 10, S02011, 2012

Forecasting with ADAPT

ADAPT can generate global forecast maps, e.g., 1 to 7 days in the future, using magnetic flux transport modeling:

Global solar magnetic map (360 x 180 deg) created by ADAPT using NISP/SOLIS VSM data as input.

- ADAPT utilizes flux transport (based on Worden & Harvey 2000) to account for known surface flows in the solar photosphere:
 - differential rotation, meridional circulation, supergranular diffusion

ADAPT Forecasting: $F_{10.7}$

ADAPT* F10.7 Skill Score

Modeling XUV, EUV, & FUV

Thermospheric models typically divide the VUV spectral regions of interest into 37 bands within the XUV/EUV/FUV intervals, where XUV is 0.1-10 nm, EUV is 10-121 nm, and FUV is 121-200 nm [Solomon and Qian, 2005]:

#	Wavelength	#	Wavelength	#	Wavelength	#	Wavelength
1	0.1-0.4nm	11	54.0-65.0nm	21	98.7-102.7nm	31	140.0-145.0nm
2	0.4-0.8nm	12	65.0-79.8nm (low)	22	102.7-105.0nm	32	145.0-150.0nm
3	0.8-1.8nm	13	65.0-79.8nm (high)	23	105.0-110.0nm	33	150.0-155.0nm
4	1.8-3.2nm	14	79.8-91.3nm (low)	24	110.0-115.0nm	34	155.0-160.0nm
5	3.2-7.0nm	15	79.8-91.3nm (mid)	25	115.0-120.0nm	35	160.0-165.0nm
6	7.0-15.5nm	16	79.8-91.3nm (high)	26	121.6nm Lyman-α	36	165.0-170.0nm
7	15.5-22.4nm	17	91.3-97.5nm (low)	27	120.0-125.0nm	37	170.0-175.0nm
8	22.4-29.0nm	18	91.3-97.5nm (mid)	28	125.0-130.0nm		
9	29.0-32.0nm	19	91.3-97.5nm (high)	29	130.0-135.0nm		
10	32.0-54.0nm	20	97.5-98.7nm	30	135.0-140.0nm		

• For this study, we used solar irradiances measured by the Solar EUV Experiment (SEE) on NASA's TIMED mission [Woods et al. 2002], which has been operating since early 2002

ADAPT Forecasting: EUV

Henney et al. 2015, Space Weather, 13, 141-153

ADAPT Forecasting: FUV

Henney et al. 2015, Space Weather, 13, 141-153

F_{10.7} & VUV Model Comparison

The F10.7 & VUV empirical models are defined as:

Average linear correlation values, and ratio of model coefficients m₁/m₂, for the period **2002 through 2010**:

Band	1-day	3-day	7-day	m_1/m_2
F10.7	.99	.97	.95	.53
XUV	.99	.98	.97	2.7
EUV	.99	.98	.97	3.2
FUV	.99	.98	.97	2.5

F10.7 modeled well with strong solar magnetic fields, and XUV/EUV/FUV modeled well with weak fields.

ADAPT F10.7 Model Online

$F_{10.7}$ model forecasts are now online:

- ADAPT runs 24/7 at the National Solar Observatory (NSO) generating global maps every 2 hours
- F10.7 model utilizes the ADAPT maps in near real-time, providing 1, 3, and 7 day advance forecast values of F10.7

AFRL

New ADAPT Forecast: Mg II Index

Mg II Index from GOME/SCIAMACHY (via Mark Weber; Composite V5).

Summary

- Near real-time ADAPT maps & F_{10.7} forecasts (1, 3, and 7 day) are public via the NSO at: ftp://gong2.nso.edu/adapt/f10/
- Near-future additions:
 - EUV power (0.8-105 nm) & Mg II Index forecasts
 - far-side detections within ADAPT maps
- For more details, see:

Forecasting Solar Extreme and Far Ultraviolet Irradiance

Henney, Hock, Schooley, Toussaint, White, Arge 2015,
Space Weather, 13, 141-153
& Space Weather Quarterly, 12, 19-31

Acknowledgements

ADAPT is supported by the AFRL & NASA, and this work utilizes data produced collaboratively between AFRL/ADAPT and NSO/NISP.